A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media
نویسندگان
چکیده
In this paper we derive a posteriori error estimates for the compositional model of multiphase Darcy flow in porous media, consisting of a system of strongly coupled nonlinear unsteady partial differential and algebraic equations. We show how to control the dual norm of the residual augmented by a nonconformity evaluation term by fully computable estimators. We then decompose the estimators into the space, time, linearization, and algebraic error components. This allows to formulate criteria for stopping the iterative algebraic solver and the iterative linearization solver when the corresponding error components do not affect significantly the overall error. Moreover, the spatial and temporal error components can be balanced by time step and space mesh adaptation. Our analysis applies to a broad class of standard numerical methods, and is independent of the linearization and of the iterative algebraic solvers employed. We exemplify it for the two-point finite volume method with fully implicit Euler time stepping, the Newton linearization, and the GMRes algebraic solver. Numerical results on two real-life reservoir engineering examples confirm that significant computational gains can be achieved thanks to our adaptive stopping criteria, already on fixed meshes, without any noticeable loss of precision.
منابع مشابه
An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media
In this work we develop an a posteriori-based adaptive algorithm for thermal multiphase compositional flows in porous media. The key ingredient are fully computable a posteriori error estimates, bounding the dual norm of the residual supplemented by a nonconformity evaluation term. The theory hinges on assumptions that allow the application to variety of discretization methods. The estimators a...
متن کاملComparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media
Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...
متن کاملResidual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods
We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...
متن کاملVertex-centred discretization of multiphase compositional Darcy flows on general meshes
This paper concerns the discretization on general 3D meshes of multiphase compositional Darcy flows in heterogeneous anisotropic porous media. Extending Coats’ formulation [15] to an arbitrary number of phases, the model accounts for the coupling of the mass balance of each component with the pore volume conservation and the thermodynamical equilibrium, and dynamically manages phase appearance ...
متن کاملA review of recent advances in discretization methods, a posteriori error analysis, and adaptive algorithms for numerical modeling in geosciences
Two research subjects in geosciences which lately underwent significant progress are treated in this review. In the first part we focus on one key ingredient for the numerical approximation of the Darcy flow problem, namely the discretization of diffusion terms on general polygonal/polyhedral meshes. We present different schemes and discuss in detail their fundamental numerical properties such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 276 شماره
صفحات -
تاریخ انتشار 2014